第一百四十二章 队伍药丸!(上)【三更】
推荐阅读:弃宇宙、渡劫之王、全职艺术家、天下第九、三寸人间、大符篆师、仙宫、大侠萧金衍、大华恩仇引、天刑纪
一秒记住【笔趣阁 www.biquge5.org】,精彩小说无弹窗免费阅读!
笔下文学【 www.bqg8.cc】,无弹窗,更新快,免费阅读!
<script language="javascript">showmn5();</script></div>
<div align="center"><script src="/Ads/txttop.js"></script></div>
<div class="adread"><script>show_read();</script></div>
正是因为有着超前的数学知识,所以王崎比任何人都清楚这篇算学论文的意义。
在数学的讨论中,常把能具体地给出某一对象或者能给出某一对象的计算方法者称之为可构造的。构造性数学是现代数学研究的一个重要领域,它的根本特征就是对可构造性的强调。所谓可构造性是指能具体地给出某一对象或者能给出某一对象的计算方法。
构造性数学与古典的数学区别在于构造性的数学认为“存在就是被构造”。为了做到构造性,数学家必须重新解释存在量词及其其他逻辑联结词和量词,以便用构造的观点解释包含这些逻辑表达式的命题的证明的含义。
基于构造性的计算理论有着非常强大的优势。它非常可靠,不像集合论和逻辑数学,根基都不稳固。但是反过来说,它因为太过稳固,所以显得非常封闭。这个理论排斥逻辑证明,排斥实无穷,排斥无数实用的、已知的方法。简单来说,它就是将一切不可靠的、不完美的东西切除了,形成了一个有限的“完美”。
这种“杀伤力”过大的法门,正是算主所排斥的。更重要的是,正是因为这种思路将太多的方法禁制了,所以导致数学家处理问题束手束脚,本身也没有任何实际用途。因此,这个观念广为指责。
而算君解决了这个问题。
算君在构造性算法上做出了新的突破,他强硬地无视了希柏澈在这一领域做出的成就。只保留其构造部分,消除了一切非构造部分。这样的新算法无比简洁,而且由于其构造性的特点。它有着很强的能行性,潜无穷的特点也更适合计算科学领域的实际应用。
一直以来,离宗都因为数学逻辑对算器学的推动作用而鄙视连宗,可是这一下,连宗的算学理论在实用性上反而超越了离宗!
“这……这不科学啊?”王崎发出了这样的感叹。
在地球,构造性数学实在二十世纪六十年代才问世的。到了这一阶段,所有数学家的三观都经过了哥德尔、图灵、丘奇等大神一次又一次地毁灭性打击。否决了无数错路;随后布尔巴基学派、格罗滕迪克等无数数学家又找出了许多的新路。那个时候,递归论和现代数学逻辑已经成为了基础性内容,可以说这个时代的数学已经和二十世纪初的数学有了天壤之别。在这样的土壤下。构造性计算理论才得以生根、发芽。
但是这个世界、这个神州,哥德尔缺席这场历史的盛会,“黄金对角线”断裂,机老图灵并没有发挥出他应有的光芒。由于没有人怀疑语义和语法之间存在矛盾。也就是人类语言本身的缺陷。算主还在完备性的南墙上狠撞狂撞。
在这种情况下,这样的数学应该没有出现的可能性啊!
不过,仔细想一下,这好像也不是不可能。毕竟在地球历史上,亨利.庞加莱死得太早,错过了数学的大发展,也让布劳威尔将直觉主义带入他个人哲学怪癖的死胡同,更没有见证到数学衍生出计算机科学、改变时代的那一天。但是算君庞家莱可是一直活着啊!
他的积累。远远在他地球的同位体之上。
“算君的这个论文是亨利.庞加莱去世五十年后才被地球科学家提出的,看来以后不能用地球的历史来判定神州逍遥的上限。靠着对算学的感觉。硬是略过无数错误的道路,开辟出这一条新路……算君果然是神州有史以来最强的天才之一!很强!如果不是学习过二十一世纪的数学理论,我甚至无法生出与他相比较的心思。”王崎暗暗赞叹,同时小心翼翼的看着冯落衣的脸色。
这下子,咱们歌庭怕是药丸啊!
在万仙幻境之中,任何小动作都瞒不过冯落衣。冯落衣感觉到了王崎的神态,苦笑:“怎么样?”
“很强,我完全不知道应该怎么形容,但是这篇论文完全可以作为一个道标,指引神州算学的发展,特别是应用算学的发展。”
“无论是理论层面还是应用层面都很强。我们原以为有了你的一阶完备律,在算学逻辑上能够领先一步,没想到我们既高看了自己,也小看了算君。”冯落衣摇头:“不愧是曾以一人之力压服整个万法门的绝世强者。”
他是万法门较年轻的逍遥。他踏入修行路的时候,正是希柏澈崛起、万法门两代强者交割的时候。而他成道逍遥的时间也是仙盟建立前后,算君没过多久就离开神州镇守别处。因此,冯落衣并没有直面那位暴君的机会。
“高看了自己?”王崎揣着明白装糊涂:“完备性的证明有差错?”
在哥德尔之前,根本就没人怀疑语义和语法之间存在矛盾,有些概念靠人类的语言根本无法定义,有些问题自无法用现有的逻辑来理解。用脚趾想也应该想得到,算主几乎不可能得到他梦寐以求的结果。
但是,又是科学发展就是这样。算主在那儿撞南墙,不可能证明普遍、广泛的完备性。但是,这一过程当中他们势必会验证一些走不通的路,提出一些无心插柳得出的理论。这些成果会成为以后数学发展的基础。如果可以的话,王崎甚至希望将歌庭派的众多逍遥引导到地球布尔巴基学派的路子上,让无数逍遥来改造神州数学,使之接近王崎更熟悉同时自身也更先进的地球数学。
冯落衣叹息:“希门主正在抱怨呢,他好像已经隐约看到了目的地,但是总有一堵不可视的墙阻隔着他,让他觉得自己像是在原地打转……”
突然,冯落衣变了脸色,直勾勾的看着王崎:“王崎,希门主托我问你一个问题,你要老实回答我。”
王崎不明所以,暗暗寻思是哪个重要的问题。
只听得冯落衣问道:“你当初已经在有限的框架下完美证明了一阶逻辑的完备,为何又突然违背有限主义的框架,用超限的方法去做下一步的研究?”
王崎语塞:“这个……灵光一闪而已……”
“你当初就预料到这种进退维谷的状况了吗?还是说,你藏了什么发现?”(未完待续。。)
<div class="adread"><script>show_read();</script></div>
<div align="center"><script src="/Ads/txtend.js"></script></div>
</div>
手机用户请浏览 http://m.bqg8.cc阅读,更优质的阅读体验,书架与电脑版同步。
笔下文学【 www.bqg8.cc】,无弹窗,更新快,免费阅读!
<script language="javascript">showmn5();</script></div>
<div align="center"><script src="/Ads/txttop.js"></script></div>
<div class="adread"><script>show_read();</script></div>
正是因为有着超前的数学知识,所以王崎比任何人都清楚这篇算学论文的意义。
在数学的讨论中,常把能具体地给出某一对象或者能给出某一对象的计算方法者称之为可构造的。构造性数学是现代数学研究的一个重要领域,它的根本特征就是对可构造性的强调。所谓可构造性是指能具体地给出某一对象或者能给出某一对象的计算方法。
构造性数学与古典的数学区别在于构造性的数学认为“存在就是被构造”。为了做到构造性,数学家必须重新解释存在量词及其其他逻辑联结词和量词,以便用构造的观点解释包含这些逻辑表达式的命题的证明的含义。
基于构造性的计算理论有着非常强大的优势。它非常可靠,不像集合论和逻辑数学,根基都不稳固。但是反过来说,它因为太过稳固,所以显得非常封闭。这个理论排斥逻辑证明,排斥实无穷,排斥无数实用的、已知的方法。简单来说,它就是将一切不可靠的、不完美的东西切除了,形成了一个有限的“完美”。
这种“杀伤力”过大的法门,正是算主所排斥的。更重要的是,正是因为这种思路将太多的方法禁制了,所以导致数学家处理问题束手束脚,本身也没有任何实际用途。因此,这个观念广为指责。
而算君解决了这个问题。
算君在构造性算法上做出了新的突破,他强硬地无视了希柏澈在这一领域做出的成就。只保留其构造部分,消除了一切非构造部分。这样的新算法无比简洁,而且由于其构造性的特点。它有着很强的能行性,潜无穷的特点也更适合计算科学领域的实际应用。
一直以来,离宗都因为数学逻辑对算器学的推动作用而鄙视连宗,可是这一下,连宗的算学理论在实用性上反而超越了离宗!
“这……这不科学啊?”王崎发出了这样的感叹。
在地球,构造性数学实在二十世纪六十年代才问世的。到了这一阶段,所有数学家的三观都经过了哥德尔、图灵、丘奇等大神一次又一次地毁灭性打击。否决了无数错路;随后布尔巴基学派、格罗滕迪克等无数数学家又找出了许多的新路。那个时候,递归论和现代数学逻辑已经成为了基础性内容,可以说这个时代的数学已经和二十世纪初的数学有了天壤之别。在这样的土壤下。构造性计算理论才得以生根、发芽。
但是这个世界、这个神州,哥德尔缺席这场历史的盛会,“黄金对角线”断裂,机老图灵并没有发挥出他应有的光芒。由于没有人怀疑语义和语法之间存在矛盾。也就是人类语言本身的缺陷。算主还在完备性的南墙上狠撞狂撞。
在这种情况下,这样的数学应该没有出现的可能性啊!
不过,仔细想一下,这好像也不是不可能。毕竟在地球历史上,亨利.庞加莱死得太早,错过了数学的大发展,也让布劳威尔将直觉主义带入他个人哲学怪癖的死胡同,更没有见证到数学衍生出计算机科学、改变时代的那一天。但是算君庞家莱可是一直活着啊!
他的积累。远远在他地球的同位体之上。
“算君的这个论文是亨利.庞加莱去世五十年后才被地球科学家提出的,看来以后不能用地球的历史来判定神州逍遥的上限。靠着对算学的感觉。硬是略过无数错误的道路,开辟出这一条新路……算君果然是神州有史以来最强的天才之一!很强!如果不是学习过二十一世纪的数学理论,我甚至无法生出与他相比较的心思。”王崎暗暗赞叹,同时小心翼翼的看着冯落衣的脸色。
这下子,咱们歌庭怕是药丸啊!
在万仙幻境之中,任何小动作都瞒不过冯落衣。冯落衣感觉到了王崎的神态,苦笑:“怎么样?”
“很强,我完全不知道应该怎么形容,但是这篇论文完全可以作为一个道标,指引神州算学的发展,特别是应用算学的发展。”
“无论是理论层面还是应用层面都很强。我们原以为有了你的一阶完备律,在算学逻辑上能够领先一步,没想到我们既高看了自己,也小看了算君。”冯落衣摇头:“不愧是曾以一人之力压服整个万法门的绝世强者。”
他是万法门较年轻的逍遥。他踏入修行路的时候,正是希柏澈崛起、万法门两代强者交割的时候。而他成道逍遥的时间也是仙盟建立前后,算君没过多久就离开神州镇守别处。因此,冯落衣并没有直面那位暴君的机会。
“高看了自己?”王崎揣着明白装糊涂:“完备性的证明有差错?”
在哥德尔之前,根本就没人怀疑语义和语法之间存在矛盾,有些概念靠人类的语言根本无法定义,有些问题自无法用现有的逻辑来理解。用脚趾想也应该想得到,算主几乎不可能得到他梦寐以求的结果。
但是,又是科学发展就是这样。算主在那儿撞南墙,不可能证明普遍、广泛的完备性。但是,这一过程当中他们势必会验证一些走不通的路,提出一些无心插柳得出的理论。这些成果会成为以后数学发展的基础。如果可以的话,王崎甚至希望将歌庭派的众多逍遥引导到地球布尔巴基学派的路子上,让无数逍遥来改造神州数学,使之接近王崎更熟悉同时自身也更先进的地球数学。
冯落衣叹息:“希门主正在抱怨呢,他好像已经隐约看到了目的地,但是总有一堵不可视的墙阻隔着他,让他觉得自己像是在原地打转……”
突然,冯落衣变了脸色,直勾勾的看着王崎:“王崎,希门主托我问你一个问题,你要老实回答我。”
王崎不明所以,暗暗寻思是哪个重要的问题。
只听得冯落衣问道:“你当初已经在有限的框架下完美证明了一阶逻辑的完备,为何又突然违背有限主义的框架,用超限的方法去做下一步的研究?”
王崎语塞:“这个……灵光一闪而已……”
“你当初就预料到这种进退维谷的状况了吗?还是说,你藏了什么发现?”(未完待续。。)
<div class="adread"><script>show_read();</script></div>
<div align="center"><script src="/Ads/txtend.js"></script></div>
</div>
手机用户请浏览 http://m.bqg8.cc阅读,更优质的阅读体验,书架与电脑版同步。